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WIND -TUNNEL, FREE-FLIGHT INVESTIGATION OF A MODEL

OF A SPIN-RESISTANT FIGHTER CONFIGURATION

By Sue B. Grafton, Joseph R. Chambers,
and Paul L. Coe, Jr.*
Iangley Research Center

SUMMARY

An investigation was conducted to provide some insight into the features
affecting the high-angle-of -attack characteristics of a high-performance
twin-engine fighter airpiane which in operation has exhibited excellent stall
characteristics with a general resistance to spinning. Various techniques
employed in the study included wind-tumnel free-flight tests, flow-visualization
tests, static force tests, and dynamic (forced-oscillation) tests. In addition
to tests conducted on the basiec configuration, tests were made with the wing

planform and the fuselage nose modified.

The results of the study showed that the model exhibited good dymamic
stability characteristics at angles of attack well beyond that for wing stall.
The directional stability of the model was provided by the vertical tail at low
and moderate angles of attack and by the fuselage forebody at high angles of
attack. The wing planform was found to have little effect on the stability
characteristics at high angles of attack. The tests also showed that although
the fuselage forebody produced beneficial contribubions to static directional
stability at high angles of attack, it also produced unstable values of damping
in yew. Nose strakes located in a position which eliminated the beneficial

noge contributions produced a severe directional divergence.

The investigation identified configuration features which promote spin
resistance and also defined test techniques and methods of analysis which can

be applied early in design of future configurations.

*Assistant Research Professor in Engineering, The George Washington

University, Joint Institute for Acoustics and Flight Sciences.



INTRODUCTION

Experience has showvm that many high-performance fighter airplanes are
susceptible to a lateral-directional divergence (sometimes referred to as
nose~-slice) at high angles of attack. {See, e.g., ref. 1.) This type of
divergence usually leads to inadvertent spins, and spin recovery for
present-day fighters is often difficult or impogsible. Therefore, there is an
urgent need to develop guidelines for use in the design of future tactical
aircraft in order to eliminate instabilities and insure good inherent
characteristics at high angles of attack. The National Aeronautics and Space
Administration currently has a broad research program underway to provide these
guidelines. One element of the program involves identification of airframe

design features which promote good stall and spin characteristics.

The present investigation was conducted in order to provide some insight
into the features affecting the stability characteristics at high angles of
attack of a high-performance twin-engine fighter which in operation has
exhibited outstanding stall and spin characteristics. These characteristics,
which result in a general resistance to sping, include positive directional
stability through the stall with no tendency to diverge and no significant

adverse yaw due to aileron deflection at high angles of attack.

A wind-tumnel. investigation was made with a 0.17-scale model of the
airplane in order to define some of the more important geometric and aerodynamic
characteristics responsible for the good stall and spin characteristics. The
study included wind-tunnel free-flight tests, flow-visualization tests, static

force tests, and dynamic (forced-oscillation) force tests.

In addition to the tests conducted for the basic configuration, tests
were made with the wing planform changed to swept and delta designs. The basic
and delta wings were also tested in a high position on the fuselage, and
fuselage forebody strakes were added in order to determine the effects of

these features on stability and control at high angles of attack.

Selected scenes from a motion picture of the free-flight tests have been
prepared ag a film supplement available on loan. A regquest card and a

description of the film (L-1152) are included at the back of this report.
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SYMBOLS

All longitudinal forces and moments are referred to the wind-axis system
and all lateral-directional data are referred to the body-axis system shown in
figure 1. All force-test data are referred to a moment reference center
located longitudinally at 18 percemt of the mean aerodynamic chord for the
basic wing. The vertical location of the moment reference center was 0.02 per-
cent of the mean aerodynamic chord above the wing-chord reference line at the
plane of symmetry. AllL measurements were reduced to standard coefficient form
on the basis of the geometric characteristics of each individuval wing planform.
Tn order to facilitate international usage of data presented, dimensional quan-
tities are presented both in the International Systems of Units (SI) and in the
U.S. Customary Units. Measurements and caleulations were made in the U.S.

Customary Units. Conversion factors for the two systems may be found in refer-

ence 2.

b wing span, m (ft)

c mean aerodynamic chord, m (ft)

CA axial-force coefficient, FA/QwS

CD drag coefficient, FD/qu

C 1ift coefficient, FL/qms

c, rolling-moment coefficient, Mx/qub
C,, pitching-moment coefficient, MY/quE
Cn yawing-moment coefficient, MZ/qub
Cy normal-force coefficient, FN/qu
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side-force coefficient, F,/q.8

frequency of oscillation, Hz

axial force, N (1b)

drag force, ¥ (1b)

1ift force, N (1b)

normal force, N (1b)

side force, N (1b)

moment of inertia about X body axis, kg-m?
moment of inertia about Y body axis, kg-m°

moment of inertia about Z body axis, kg—m2

ab o of
2V

reduced-frequency rarameter,
rolling moment, m-N (ft-1b)
pitching moment, m-N (ft-1b)
yawing moment, m-N (ft-1b)
roll rate, rad/sec

pitch rate, rad/sec

dynamic pressure, Nﬁme (Ib/ftaj

{slug-Tt2)
(slug-£t2)

(slug-ft2)



U, VW

X,Y,%

jak]

T

yaw rate, rad/sec
wing area, m® (£47)

components of resultant veloecity V along X, Y, and Z body

axes, respectively, m/sec (ft/sec)
free-stream velocity, m/sec (ft/sec)
body reference axes (fig. 1)
angle of attack, deg
rate of change of angle of attack, rad/sec
angle of sideslip, deg
rate of change of sideslip, rad/sec
aileron deflection (per side), positive for left roll, deg
leading-edge flap deflection, deg
horizontal-tail deflection, positive for nose-down pitch, deg
rudder deflection, positive for nose-left yaw, deg
ineremental rolling-moment coefficient
incremental yawing-moment coefficient
incremental side-force coafficient

angular frequency, <2nf, rad/sec
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MODEL, AFPARATUS, AND TESTING TECHNIQUES

Basic Configuration

A three-view sketch showing the basic configuration of the model is
presented in figure 2, photographs of the model are presented in figure 3,

and mass and geometric characteristics are listed in table I. The model was
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constructed primarily of molded fiberglass and was a 0.17-scale model of the

full-scale girplane.

The model was powered by compressed air which was brought into the top
of the model by flexible plastic tubing and ejected from metal tubes located
inside the model near the rear of the fuselage. This ejector system simulated
flow through the engines, since the model was tested with the engine inlets and

interior of the model. open.

The longitudinal control surface consisted of an all-movable horizontal
tail, the lateral control surfaces were conventional allerons, and the
directional control surface was a conventional rudder. For manual control by
the pilot, the control surfaces were actuated by electropneumatic servos which
provided a full-on or full-off flicker-type deflection. Bach actuator had a
motor-driven trimmer which was electrically operated by the pilots so that
controls could be rapidly trimmed in flight. The systems for pitch and roll
control were also connected to individual rate damper systems. The rate dampers
congisted of rate gyroscopes driven by compressed air which actuated the
surfaces in proportion to piteh and roll rates. The control-surface deflections

used during the flights were as follaows:

Pilot Damper Maximum

Control (flicker) (proportional) | available

Horizontal tail, deg . . . . . +5 15 5 to =25
Ailerons (per side), deg . . . +10 +5 30
Rudder, deg . - « + + « « + = +10 to 130 - +30

Deflection of the horizontal tail on the full-seale airplane is limited to 17°
trailing edge up, but increased travel was provided for the model in order to

investigate angles of attack beyond those obtainable'in 1lg flight at full zcale.

Modified Configuration

One airframe component expected to have significant effects on the
stability and control of the model at high angles of attack was the wing.

Past studies (see refs. 3 and 4, e.g.) have shown that wing planform



characteristics, such as sweepback and taper ratio, together with the vertical

location of the wing on the fuselage can have large effects on lateral-
directional stability at high angles of attack. In order to evaluate the
effeats of wing modifications, the additional wings and wing-fuselage
combinations shown in figures 4, 5, and 6 were tested. In addition to the
basic wing, a swept wing (similar in planform to that employed by the
configuration of ref. 1) and a delta wing were tested. As shown in figure 5,
the basic wing and the delta wing were also tested in a high position with
modified engine inlets. (The engine inlets were modified in order to smooth
the intersection of the high wing and the fuselage.) All wings were of equal
area and of relatively equal weights, so that the flight tests were conducted
with a congtant value of wing loading., Aspect ratio and wing span varied with
each wing design. ({See table I.) The location of the 0.25¢ point was constant
for all configurations tested. The additional wings incorporated conventional
ailerons for roll control. Plan views of the configuration with the various

wings are shown in figure 6.

Tests were also conducted to determine the effects of the symmetrical nose
strakes shown in figure 7. The strakes were designed to eliminate asymmetric
yawing moments and unstable values of damping in yaw at high angles of attack,
as discussed in reference 5. As a further element of studies of the effects of
the fuselage nose, the asrodynamic characteristics of the isolated nose of the

basic configuration were determined in tests of the nose alone (fig. 8).

Free-Flight Test Technique

The test setup for the free-flight tests is shown in figure 9. The model
was flown without restraint in the 9- by 18-m (30- by 60-ft) open-throat test
section of the Langley full-scale tunnel and was remotely controlied about all
three axes by two hwman pilots. One pilot, who controlled the model about its
roll and yaw axes, was stationed in an enclosure at the rear of the test
section., The second pilot, who controlled the model in pitch, was stationed at
one side of the turmel. Pneumatic and electric power and control signals were
supplied to the model through a flexible trailing cable which was made up of

wires and light plastic tubes. The trailing cable also incorporated a



0.318-cm-diameter (1/8-in.) steel cable that passed througn a pulley above the
test sectiom. This section of flight cable was used to catch the model when an
uncontrollable motion or mechanical failure occurred. The entire flight cable
was kept slack during the flights by a safety-~cable operator using a high-speed
pneumatic winch. A further discussion of the free-flight technique, including

the reasons for dividing the piloting tasks, is given in reference 6.
TESTS

Pree-Flight Tests

Free-flight tests were conducted to determine the dynamic stability and
control characteristics of the following model configurations at high angles
of attack:
1. Low-wing configurations
(a) Basic
(b) Swept
(c) Delta
2., High-wing configurations
(a) Basie
(b) Delta
The flight tests included steady flights at high angles of attack up to and
including stall, studies of pilot lateral-control technigues at high angles of
attack, and evaluation of the effects of artificial rate damping. In addition,
a few flight tests were made to determine the effects of wing leading-edge flap
deflection and wing-tip fuel tanks on the characteristics of the basic
configuration. The results of the flight tests were mainly qualitative and
consisted of pilot opinion of the behavior of the model. Motion-picture
records were made of all flights and selected scenes are included in the film

supplement to this report.

Force and Flow«Visualization Tests

Static and dynamic (forced-oscillation) tests were conducted in the
Langley full-scale tunnel at a Reynolds number, based on the mean aerodynamic

chord of the basic wing, of about 0.65 x 106. This value of Reynolds number



was about the same as that for the flight tests, which, of course, varied with
1ift coefficient. Static tests were made for a range of angle of atbtack from

-10° to 40° over a range of angle of sideslip of +40° for the configurations
flown and included component-~buildup tests and control-effectiveness tests.

The forced-oscillation tests were made in pitch, roll, and yaw to determine the
dynanic stability derivatives for the low-wing configurations. The tests were
made with an angular amplitude of i5o and an ogscillation freguency of 1 Hz,
which resulted in values of the reduced-frequency parameter k of 0,181 for
the rolling and yawing tests and 0.056 for the pitching tests. Conventional
wind -tunnel corrections for flow angularity have been applied to all force data,
A limited number of tuft, smoke, and oil flow-visualization tests were also

conducted to determine flow characteristics around the model.
RESULTS AND DISCUSSION OF FORCE TESTS

Static Longitudinal Characteristics

Basic configuration.- The static longitudinal characteristics of the basic

configuration are presented in figures 10 to 12, The data of figure 10 show the
effects of horizontal-tail deflection on the longitudinal characteristics. The
model was statically stable and the horizontal tail was effective over the range
of angle of attack tested. With the tail removed, the 1ift curve indicated
major wing stall near o = lTo; this condition was verified by tuft flow-
visualization tests. With the tail on, the 1ift curve did not exhibit a sharp
break. The data also show that for the particular center of gravity of the tests
(0.182), deflection of the tail to the maximum available on the full-scale
airplane (6h = -17°)wou1d trim the model at about o = 21° for 1g flight.

As previously pointed out, the horizontal-tail travel was extended to Oy = -259
for the present model in order to investigate stability and control character-

istics at angles of attack higher than those cbtained in 1 g flight.

The data of figure 11 show that deflection of the wing leading-edge flap
produced a small increase in lift at high angles of attack and no effect on
longitudinal stability. Addition of wing-tip tanks to the basic configuration
had no significant effects on the longitudinal aerodynamic characteristics of

the model, as shown in figure 12,

10



Modified configuration,- The longitudinal characteristics of the model

with the swept and delta wings are given in figure 13 for various values of
ah and for the horizomtal tail off. This figure shows that the swept- and
delta-wing configurations were stable throughout the angle-of -attack range.
Figure 14 shows the characteristics for the three wing configurations with
6h = 0 and with the tail off. These data indicate that with the tail on,
the level of longitudinal stability was about the same for all three configu-
rations and that the swept- and delta-wing configurations produced more 1ift

than the basic configuration at angles of attack beyond 20°.

Static Lateral-Directional Characteristics

Basic configuration.- The static lateral-directional characteristics of

the basic configuration are presented in figure 15 in terms of the static
stability derivatives CYB, Clg’ and Cnﬁ for &, = 0° and -17°. The data

show that the static directional-stability derivative CnB was large and positive
(stable) at low angles of attack. The magnitude of CnB decreaged markedly

when the wing stalled at an angle of attack near lT ; but CnI3 became increas-
ingly stable at post-stall angles of attack, in contrast {c¢ trends shown by

most current fighter configurations. (See ref. 1, e.g.) This unusual increase

in directiocnal stability at post-stall angles of attack is expected to be a

major beneficial factor resulting in the excellent stall characteristics shown

by the configuration.

The data of figure 15 show that the effective dihedral derivative also
remained stable {negative) over the angle-of-attack range. This characteristic
is beneficial to dynamic lateral-directional stability at high angles of attack,
as will be discussed in a subsequent section. Deflection of the horizontal tail

had little effect on the static lateral-directional stability derivatives.

A pnumber of additional component-buildup tests were conducted to determine
the airframe component responsible for the pronounced increase in CnB exhibited
by the configuration beyond wing stall. The data shown in figure 16 indicate
the contribution of the vertical tail to CnB. Two significant results are
immediately apparent from these data: First, the tail contribution decreased

markedly at angles of attack beyond that for wing stall; gecond, when the tail
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was off, the directional stability increased markedly at angles of attack above
250, with the result that the model was directionally stable at angles of attack
above 510 without a wvertical tail. The decrease in tail contribution to direc-
tional stability at angles of attack beyond that for wing stall (o > 17°) was
due to the fact that the tail became immersed in the low energy wake of the
stalled wing. The fact that the loss in tail effectiveness was the result of
loss of dynamic pressure at the tail was verified by tests to determine rudder
effectiveness and will be discussed in a later section dealing with those tests,
Such logs in tail effectiveness at high angles of attack is not unusual. The
more remarkable, and probably more significant, characteristic is the large

increase in tail-off directiomal stability at high angles of attack.

Additional tests were made to determine the wing-fuselage component respon-
sible for the stability at high angles of attack, The component found to be
responsible was the fuselage forebody, shown in figure 8. Results of tests con-
ducted with the isolated nose mounted on a balance at a distance ahead of the
moment center representative of that for the nose of the basic configuration are
vregented in figure 17. The data show that the isolated nose was directionally
unstable at low angles of attack, as would be expected. At high angles of
attack, however, the isoclated nose became directionally stable, and comparison
of data for the nose alone and data obtained for the basic configuration with
the vertical tail off indicates that virtually all the directional stability of

the configuration at angles of sattack above 520 was produced by the nose.

The geometric feature probably responsible for the aerodynamic character-
istics of the fuselage forebody of the present configuration is the cross-
sectional shape shown in figure 7. As shown in the sketech, the cross section is
an elliptical shape with the major axis horizontal. It has been found in past
investigetions (refs. 7 to 10, e.g.) that a "flattened" nose similar to that of
the present configuration tends to produce such stability; the relatively long
nose of the present configuration tends to amplify this effect because of the

long mement arm through which side forces produced by the nose can act.

Tuft, smoke, and 0il flow=-visualization tests were conducted to determine
the flow pattern on the nose associated with the aforementioned aerodynamic

characteristics. The resuits showed that two strong vortex sheets were shed

12



from the pointed nose at high angles of attack, and the proximity of the indi-
vidual sheets to the upper surface of the nose probably resulted in a pressure
field conducive to the generation of beneficial side forces on the nose. Shown
in figure 18 are oil-flow photographs of the upper nose surface at a = L0o°

for B =0° and B = £10°. At B = 0°, the reattachment lines associated with
the two vortex sheets are clearly seen to be fairly symmetrical on the surface.
When the nose was sideslipped o the left, as showm for B = 10°, the downwind
vortex sheet did not impinge on the upper surface, but the vortex sheet on the
windward side was close to the surface. This flow pattern probably produced low
pressures on the windward side of the nose which resulted in a net side force on
the nose to the right. Because of the long distance between the nose and the
center of gravity, a substantial nose-right, or statically stabilizing, yawing

moment was created.

The results of additional force tests also served to verify the importance
of the nose on the stability characteristics of the present configuration. For
example, shown in figure 19 are the results of tests to determine the effects
of the fuselage forebody strakes (fig. 7). The results indicate that the
astrakes eliminated the stabilizing influence of the nose at high angles of
attack., In addition, the data indicate that substantial beneficial interference
effects existed between the flow field shed by the nose and the wing, as evi-
denced by large changes in CZB with the strakes on. Evidently, the strakes
fixed the separation point on the forebody so that the beneficial flow field
described previously was eliminated. Experience has shown that nose strakes are
normally used to provide a substantial increase in directional stability at high
angles of attack for other nose shapes. The results of the present investiga-
tion and of reference 5 indicate, however, that improperly placed nose strakes
can severely degrade an at high angles of attack.

Presented in figures 20 and 21 are the results of tests to determine the
effects of leading-edge flap deflection and wing-tip tanks on static lateral-
directional stability. The data show that deflection of the leading-edge flap
produced small beneficial effects for both CnB and Czs, ag would be expected
because of the small increase in 1ift discussed previously. Addition of tip

tanks increased clﬁ somewhat, particularly near the stall.
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Modified configurations.- The static lateral-directional stability charsc-

teristics of the swept- and delta-wing configurations are presented in figure 22
and the characteristics of these configurations are compared with those of the
basic configuration in figure 23. As shown in figure 23, the swept- and delta-
wing configurations had levels of directional stability equal to or higher than
those of the basic configuration, and the trends of CnB at high angles of
attack were duminated by the characteristics of the nose, as previously dis-
cussed for the basic configuration. It should also be noted that the apparent
increase in CnB for the swept- and delta-wing configurations at low angles of
attack was caused by the data-reduction procedure, in which the aerodynamic
characteristics were based on the geometric characteristics of the individual
wings. When compared for equal wing spans, the values of CnB fér the
individual wings are about equal at o = 0°. The relative unimportance of the
large changes in wing planform for the present configuration at high angles of
attack underlines the complexity of flow phenomena and the increased importance
of what might be supposed to be secondary design features, such as fuselage

forebody shape.

The complexity of the situation was emphasized by the results of the force
tests for the high-wing configurations (see fig. 5) as presented in figure 24.
Relocation of the basic wing to a high position (fig. 2h(a)) resulted in a
degradation of both Cnﬁ and CZB’ whereas relocation of the delta wing to the
high position (fig. 24(b)) resulted in a significent increase in an at high
angles of attack for 6h = 0°, Pests to determine the effects of horizontal-
tail deflection for the configuration with the high delta wing indicated a
severe deterioration of Cn[3 due to Bh. As shown in figure 25, deflection of
the tail from 6h = 0° %o &y, = -25O resulted in extremely unstable values of
CnB above o = 23° and a reduction in effective dihedral., This result was
probably caused by a change in the vertical location of an adverse flow from the
wing brought about by & change in the load on, and conseguently the pressure

field induced by, the horizontal tail.
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Tateral-Directional Control Characteristics

Basic configuration.- The results of force tests conducted to determine

the control effectiveness of the ailerons and rudder for the basic configura-
tion are presented in figures 26 and 27. The data are presented in terms of
the incremental values of Co, Cq, and Cp produced by a right-roll or right-
yaw controcl input. The data of figure 26 show that the incremental rolling
moment produced by aileron deflection for the basic configuration decreased
markedly as wing stall was approached; the ailerons produced relatively small
values of AC; at post-stall angles of attack. The incremental yawing moments
produced by aileron deflection were favorable (nose-right for right roll input)
except for large control inputs <8a = -50D near stall. In addition, the
favorable values of ACn were produced by interference with the vertical taill,
as shown by the data for Ba = -500 with the tail on and off. These favorable
yawing moments are unusual for a high-performance fighter and are another

factor producing the known spin resistance of the present configuration.

The incremental forces and moments produced by rudder deflection are
presented in figure 27. The rudder was effective for angles of attack up to
wing stall; at higher angles of attack the rudder effectiveness decreased
rapidly. The reduced rudder effectiveness beyond wing stall wes associated
with immersion of the vertical tail in the low-energy wake of the stalled wing.
Since this reduction in rudder effectiveness is almost exactly the same as the
reduction in the vertical-tall contribution to CnB shown in figure 16, it is
apparent that the loss in tail contribution to directional stabillty was caused
primarily by reduced dynamic pressure. It should be noted, however, that the
rudder effectiveness of the present configuration remains quite high to angles

of attack substantially beyond wing stall.

Modified configuration.- The aileron effectiveness for the swept- and

delta-wing configurations is compared with that for the basic eonfiguration in
figure 28. Both the swept and delta configurations exhibited equal or larger
increments of &Cl at angles of attack above o = 120 than did the basic con-
figuration; however, both wing modifications produced large adverse yawing
moments at and beyond wing stall. These adverse values of 4OC, would be

expected to degrade the post-stall control of the configuration considerably.
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The rudder effectiveness of the various configurations is shown in
figure 29. Although the results for the three configurations were about equal
at o =0° (when compared for a constant value of b), the swept- and delta-
wing configurations exhibited much higher values of rudder effectiveness at high
angles of attack than did the basic configuration. This result was probably
related to stall patterns on the individual wings and relative location of the
stalled-wing wakes. It should be noted that the reduction in rudder effective-
ness at high angles of attack for these two configurations was much less than
the reduction in vertical-tail contribution to CnB (see fig. 22). This
indicates, therefore, that the loss of stability was caused by both a loss in

dynamic pressure and an adverse sidewash at the tail.

Dynemic Stability Derivatives

Basic configuration.- The results of the forced-cscillation tests in pitch

for the basic configuration are presented in figure 30. The data show that the
model had steble values of damping in pitch (negative velues of Cp + cm&)
over the range of angle of attack and that the contribution of the horizontal
tail to Cmq + Cm& remained about constant over the range of angle of attack.
The results of the forced-oscillation tests in roll are presented in figure 31.
The damping-in-roll parameter Czp + Clé gin o was stable (negative) for angles
of attack up to 270, and unstable values were measured for values of o between
270 and 43°, The vertical tail had little effect on the damping-in-roll param-
eter, as might be expected, The results of the forced-oscillation tests in yaw
are pregented in figures 32 and 33. As shown in figure 32, the damping~in-yaw
parameter Cnr - Cné cos o was stable (megative) at angles of attack below stall
but became unstable near o = 28° and attained very large unstable values at
higher angles of attack. The vertical tail had little effect on the unstable
values or trends of the data at high angles of attack.

Additional forced-oscillation tests were conducted to determine the cause
of the unstable values of Cnr - Cné cos a at high angles of attack. As shown
in figure 33, positive values of the parameter CYr - Cyé cos a Were obtained
with the positive values of Cnr - Cné cog &. This result indicates that the

nose was the principal cause of the unstable values of damping. Evidently, the
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features of ithe nose which promoted the beneficial effects on static directional
stability at high angles of attack alsc produced detrimental effects on dynamic
damping in yaw. The physical cause of the unstable damping in yaw is illus-
trated by the sketches shown in figure 34. In figure 34(a) the configuration

is shown in a steady sideslipped condition with the same value of P at both
the nose and the center of gravity. As pointed out previously, for the present
configuration, the nose produced a side force which acted through a relatively
long moment arm to create a stabilizing yawing moment that tended tc¢ reduce the
value of R, The sketch in figure 3L(b) illustrates the situation for yawing
flight, with zero sideslip at the center of gravity. Because the flight path is
curved, the nose of the configuration is subjected to a local sideslip angle
which produces a side force in & manner similar to that for the static sitvatiaon.
In this case, however, the resulting yawing moment is in a direction which tends
to increase the value of yawing velocity and therefore results in unstable

values or Cy .
T

Modified configuration.- The results of the forced-oscillation tests in

pitch for the swept- and delta-wing configurations are compared with the results
for the basic configuration in figure 35. The data show that all configurations
had stable (negative) values of Cmq + Cp  over the range of angle of attack,
and that the delta configuration had significantly lower values of damping in

pitch than the swept or basic configuration.

The results of the forced-oscillation tests in roll presented in figure 36
show that values of the damping-in-roll parameter for the swept and delta con-
figurations were larger than those of the basic configuration at moderate angles
of attack, but all configurations exhibited unstable values at angies of attack
between 31° and 42°.

The results of the damping-in-yaw tests are presented in figure 57. The
data show that the-SWePt and delta configurations, like the basic configuration,
exhibited unstable values of Cnr - Cné cos oo at high angles of attack, but
the delta configuration remained stable to a much higher angle of attack than

the basic configuration.
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RESULTS AND DISCUSSION OF FLIGHT TESTS

A motion-picture film supplement with selected scenes from the free-flight
tegts has been prepared and is available on loan. A request form and a descrip-
tion of the film will bé found at the back of this paper. For all the free-
flight tests discussed herein, the center of gravity was at 0.18a.

Longitudinal Characteristics

Since the free-flight tests were intended primarily as an investigation of
the lateral-directional characteristics of the model, the pitch damper was
active for all tests and the pitch pilot's task was only to hold the model as
¢losely as possible in place in the tunnel test seection and to make changes in
model trim as necessary. It should be noted, however, that no unusual or unsat -
isfactory characteristics were noted during the tests and the pilot expressed
satisfaction with the stability and control characteristics up to the highest

angles of attack flown.

Lateral-Directional Characteristics

Basic configuration.- During the flight tests it was found that the basic

model without artificial damping in roll or yaw flew smoothly and with little
effort by the pilots up to an angle of attack of about 20°. Above o = 20°
there was a slight nose wandering, or directional "looseness,” noted by the
lateral-directional pilot. The nose wandering (although small) increased the
pilot effort required to fly the model smoothly. But the pilot was satisfied
with the level of stability and considered that the major cause of the increased
pilot effort was the rapid decrease in lateral-control effectiveness with
increasing angle of attack. (See fig. 26.) At an angle of attack of about 30°
the model diverged in yaw against full corrective controls. The yawing motlon

at the divergence appeared to be a fairly slow rotation about the Z body axis.

Flight tests were also made with the leading-edge flap deflected 20°,
Although the lateral response of the model appeared to be better damped near
0
o = 20, the results were essentially the same as for the basic configuration

and the slow divergence still occurred at about o« = 500. The mcodel was flown
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with the addition of wing-tip fuel tanks with no noticeable effect on the
dynamic stability of the model. Similarly, the use of artificial damping in
roll had no significant effect on the dymamic stability at high angles of
attack.

When the strakes of figure 7 were added to the model, satisfactory flights
were made up to about o« = 18°. At slightly higher angles of attack, the model
exhibited more serious nose wandering than the basic configuration, and at
a=23" a very rapid nose slice, or directional divergence, occurred. This
result serves to emphasize the importance of the fuselage forebody on the sta-
bility characteristics of the present configuration at the stall, as illustrated
by the data of figure 19.

The possibility of directional divergence at high angles of attack is nor-
mally examined by means of the dynamic directicnal-stability parameter
(ref. 11), where

Cng,ayn

I

. 7, .
Cnﬁ,dyn = CnB - EE-CI sin «

B

Negative values of CnB,dyn usually indicate the existence of a direc-
tional divergence. Values of CnB,dyn calculated from data of figures 15 and
19 for the basic configuration with and without nose strakes are presented in
figure 38. The parameter Cnﬁ,dyn remained positive over the entire angle-of-
attack range and therefore did not predict the directiomal divergence that was
exhibited in the flight test at « = 230 for the configuration with nose strakes
and at o = 300 for the basic configurafion. For the configuration with the
nose strakes, a minimum value of CnB,dyn occurred around o = 270 because of
the unstable {negative) values of an at high angles of attack (fig. 19). For
the basic configuration without nose strakes shown in figure 38, an,dyn
increased positively (stable) at the higher angles of attack. It appears,
therefore, that the slow directional divergence exhibited by the model near
@ = 30° was not predicted by Cng gyn DUt is probably associated with the
unstable values of Cnr - Cné cos8 o (fig. 32) and the low rudder effectiveness

(fig. 29), neither of which is accounted for in the criterion.

an »dyn
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The flights made to determine the effects of various pilot lateral control
technigues at high angles of attack consisted of flying the model with rudder
and ailerons individuvally and in an interconnected, or coordinated, mode. The
results of these tests showed that flying the model with the rudder alone at
high angles of attack was about as good as using both rudder and ailerons.
When the wing-tip tanks were added and the rudder was used for lateral contrel,
noticeable rolling motions due to control inputs were obtained, probably
because of the increase in CIB produced by the tanks, as shown in figure 21.
At angles of attack above 10° , the pilot could not use allerons alone for lat-
eral control because of apparently reduced control effectiveness. BSome indica-
tion of the shortcomings of the aileron control at high angles of attack can be
obtained from the aileron-effectiveness parameter (ref. 11) given by

'y
n

Cn|3 - C;B EE;

Negative values of this parameter indicate roll reversal; that is, a control
input for right roll results in roll to the left. The calculated values of the
parameter for the basic configuration are presented in figure 39, and the
results indicate that roll reversal 4id not occur. This parameter does have a
minirum value at an angle of attack a few degrees above wing stall, which
occurrad around o = l?o. The varistions in magnitude of the aileron-
effectiveness parameter are caused by veriations in CnB and aileron yawing-

moment characteristics.

Modified configuration, - The swept-wing configuration exhibited dymnamic

stability characteristics which were similar to those of the basic configuration.
The model could be flown easily for angles of attack up to about 26°., At
slightly higher angles of attack the lateral pilot noted a slight oscillation in
roll ("wing rock”), and at o« = 30° the model diverged in yaw against full
corrective control., The rate of divergence was about the same as for the basic

~omfiguration.

During the flight tests it wag found that the delta~wing configuration

exhibited the same general flight characteristics as the basic configuration.
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Slight nose wandering occurred at about a = 200, and at an angle of attack of

about 35° the model again exhibited the slow divergence in yaw.

The variations of Cnﬁ,dyn for the swept~ and delta-wing configurations
are compared with that for the basic configuration in figure 40, The values of
Cnﬁ,dyn were large and positive for all configurations, indicating no direc-
tional divergence, and it therefore appears that the slow divergences observed

during the flights were caused by the unstable values of damping in yaw ghown

in figure 37.

When the basic wing was moved to a high position (25 in fig. 5), the char-
acteristics of the model were severely degraded. Nose wandering began near
a = 18o and the model exhibited a fairly slow directional divergence near
o =21°% In a similar mamner, the high delta-wing configuration also showed
degraded characteristics and a rapid directional divergence near o = 270. The
variation of CnB,dyn for the basic- and delta-wing configurations in the high
position is presented in figure 41. For the high basic wing the possibility of
a mild direcéional divergence is indicated by a value of CnB,dyn of about zero
near a = 220, which is in good agreement with results of the free-flight tests.
The data for the high delta-wing configuration with the elevator deflected 250
show very small positive values of CnB,dyn near o = 520; however, the severe
directional divergence near o« = 27 which occurred in the flight test was not

inaicated by CnB dyn'
2

The results of the lateral-control tests for all the aforementioned mod-
ified configurations were similar to those for the basic configuration in that
the rudder was the most effective means of roll control at high angles of attack.
It was noted, however, that use of the ailerons appeared to be completely unsat-
isfactory because of noticeable adverse yaw. The degraded aileron effectiveness
for these configurations is illustrated by the variation of the aileron-
effectiveness parameter shown in figure 42, At high angles of attack the swept-
and delta-wing configurations show negative values of the parameter, which
indicate reversal of roll response due to the adverse aileron yaw shown in

figure 28.
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INTERPRETATION OF RESULTS

The results of the free-flight tests for the basic configuration are in
very good agreement with the characteristics exhibited by the full-scale air-
plane. In particular, within the operatiomal angle-of-attack range, the absence
of any divergence, the good rudder effectiveness, and the absence of adverse yaw
due to ailercns appear to have been adequately represented by the model. OfF
course, the low values of Mach and Reynolds numbers assoclated with the present
tests could cause some characteristics, such as wing stall, to cceur at slightly
different angles of attack. In addition, the confined space available within
the wind tumel, the rapidity of the motions of the model, and the lack of
piloting cues cause the evaluation of lateral-control techniques to be gqualita-
tive at best. It appears, however, that the results of the present tests are
indicative of some of the factors which cause the basic configuration to have

outstanding stall and spin characteristics.

It should be pointed out, however, that some of the factors, such as nose
shape, which was found to have a large influence on the stability of the present
configuration at high angles of attack, may be insignificant for other config-
urations. The blending of airframe components for good characteristics at high
angles of attack is very configuration dependent and there are few general con-
clusions to be made, Instead, wind-tunnel test techniques and methods of anal-
ysis similar to those presented herein must be used early in design stages in

order to insure good stall characteristics.

SUMMARY CF RESULTS

The results of a wind-tumnel and free-flight investigation to determine the
factors responsible for the spin-resistant nature of a current fighter airplane

may be summarized as follows:

1. The model exhibited exceptionally good dynamic stability character-
istics for angles of attack substantially beyond wing stall.

2. The configuration was directionally stable over the angle-of-attack

range of the tests. The directional stability was provided by the vertical tail
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at low and moderate angles of attack and by the fuselage forebody (nose) at
high angles of attack.

3. The wing planform had little effect on the stability characteristics
at high angies of attack.

4, The fuselage forebody produced beneficial contributions to static

directional stability, but it also produced unstable values of damping in yaw.

5, Use of nose strakes located in z position which eliminated the bene-
ficial nose contributions resulted in a severe directional divergence at high

angles of attack.
Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., May 23, 197k,
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TABLE T.- MASS AND GEOMETRIC CHARACTERISTICS OF THE

LOW-WING MODEL CONFIGURATIONS

Bagic wing swept wing Delta wing

Model weight « . . + « « « + « & 251.3 N 243.6 N 24h .9 W
{56.5 1b) (54.76 1b) (55.06 1b)

Model moments of inertia:
I = « o v e v e e e 0.56 kg-ue 0.31 kg-m? 0.41 kg-m?
(0.41 slug-ft2)  (0.23 slug-ft2)  (0.30 slug-ft2)
TV « 0 v v v e e e e e 8.53 kg-nmt 8.76 kg-m 8.6k kg-nP
(6.29 slug-ft2) (6.46 slug-Tt2) (6.37 slug-ft2)
Ig, « o v v 0 0 e e e 8.95 kg-m2 9.06 kg-me 9.0k kg-m°
(6.60 slug-ft2)  (6.68 slug-ft2)  (6.67 slug-ft2)

Wing:

SPAM « « + & = x4 4 e e e e e 1.34 m 1.17 m 1.0l n
(4.39 ft) (3.85 ft) (3.31 ft)
ATPEB v o v v v e e e e e e 0.49 m2 0.49 m? 0.49 m?
(5.24 ££2) (5.24 ft2) (5.24 £t2)
Root chord « . « « « ¢ & & « + 0.59 m 0.7 m 0.92 m
(1.95 ft) {(2.34 ££) {(3.01 ft)
Tip chord . « « & « & « + « o 0.15 m 0.12 m 0.05 m
(0.48 ft) (0.39 ft) (0.15 ft)
Mean aserodynamic chord . . . . - 0.41 m 0.8 m 0.61m
(1.34 £t} (1.59 ft) (2.01 ft)
Aspect ratio « .« « . .« .. . 3.68 2.82 2.09
Taper ratio . . « « « « « o - 0.25 0.17 0.05
Dihedral + + « o = « o = « o » 0 3,600 0
Aileron area (one side) 0.013 m® 0,014 w2 0.013 me
(0.14 ££2) (0.15 £t2) (0.14 ft°)
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TABLE I.- MASS AND GEOMETRIC CHARACTERISTICS OF THE

LOW-WING MODEL CONFIGURATICNS — Concluded

Horizontal tail:

AT€B + v v 4 v b e e e e e e e e e e e e e e e e e e e e e e . 0165 P
: (1.78 £42)

SPAN = & v 4 v s 5 4 4 a2 % % s s s e s e s e e e s e e e e e e 0.75 m
(2.46 ft)

Aspect ratio (exposed) . . . « v v v 4 4 b e e e e e e e e e e e e e 2.88
Taper ratio . & & ¢ 4 4 ¢ 4 v 4 4 b e 4 e e w e e e e e e e e e 0.3%3
Dihedra.l . - . - - - L] . . . - * ] L] L] - . - - - - - - - - - L] L] . . - -]‘I'o 0

Vertical tail:
=

Area (eXPOSEA) + & 4 4 4 4 4 4t e e e e e e e e e e e e e e e .(. 0.12 g)
1.25 ft

Aspect ratio (exposed) « v v v v v e 4 e e e e e e e e e e e e e e e 1.22
Taper ratio (eXPOSEd + « v v v 4 4 4 e e e e e e e e e e e e e e e e 0.25

Rudder area (aft of hinge) . . . . . . . . ¢ ¢ v v v v v v v v o v . 0.017m?
(0.18 ft2)

Overall fuselage length . . . . & & & & i 4 i i i v e v s v e o s v 2.38m
{7.81 %)
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Figure 1.- The body system of axes.
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Figure 2.- Three-view sketch of basic model. Dimensions are given in m (ft).
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29



0¢

(b) Model in free flight.

Figure 3.- Concluded.
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(c) Delta wing.

Figure 4.- Concluded.
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(a) Basic wing in

Figure 5.- Photographs

high position.

of high-wing models.
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(b) Delta wing in high position.

Figure 5.- Concluded.
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Figure 6.- Sketch of three wing configurations.
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Figure 7.- Sketch of strake position. Dimension given is in em (in.).
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Figure 8.- Side view of nose alone.
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Dimensions are given in m (ft).
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(a) Swept wing.

Figure 13.~ Variation of static longitudinal characteristics with
angle of attack for modified configurations.
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.- Fffect of horizontal-tail deflection on static lateral-directional

Figure 15
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Vertical tail -
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Figure 16.- Effect of the vertical tail on static lateral-directional

stability for basic configuraticn.
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